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Abstract—Recent innovations in Wi-Fi sensing capitalizes on
a host of powerful deep neural network architectures that
make inferences based on minute spatio-temporal dynamics in
the wireless channel. Many of such inference techniques being
resource intensive, conventional wisdom recommends offloading
them to the network edge for further processing. In this paper,
we argue that edge based sensing is often not a viable option
for many applications (cost, bandwidth, latency etc). Rather, we
explore the paradigm of on-device Wi-Fi sensing where inference
is carried out locally on resource constrained IoT platforms. We
present extensive benchmark results characterizing the resource
consumption (memory, energy) and the performance (accuracy,
inference rate) of some typical sensing tasks. We propose
Wisdom, a framework that, depending on capabilities of the
hardware platform and application’s requirements, can compress
the inference model. Such context aware compression aims to
improve the overall utility of the system - maximal inference
performance at minimal resource costs. We demonstrate that
models obtained using the Wisdom framework achieve higher
utility compared to baseline models in more than 85% of cases.

I. INTRODUCTION

Wi-Fi sensing has gained significant traction from the
research community due to its ability to leverage existing
wireless infrastructure as a sensing modality. The recent
IEEE 802.11bf [1] amendment outlines sensing specific
procedures and protocols in a WLAN setting, advocating
for large scale adoption, standardization and interoperability
among Wi-Fi devices doubling as ‘wireless sensors’. This
opens up new opportunities for IoT platforms to perform
large scale wireless sensing, specifically leveraging Wi-Fi
networks. Recent literature in this area have majorly focused
on designing sophisticated inference models (e.g., utilizing
deep neural networks) [2] to make Wi-Fi sensing robust and
accurate. While such efforts have lead to several pioneering
contributions in the Wi-Fi sensing landscape, a prominent re-
search gap exists in realizing the systemic bottlenecks involved
in translating such solutions to an IoT based ecosystem. In this
paper, we highlight the key challenges associated with Wi-
Fi sensing on resource constrained IoT devices and perform
extensive benchmark experiments to understand the various
system bottlenecks.

In a nutshell, Wi-Fi sensing leverages the multipath charac-
teristics of the underlying wireless channel as a sensing metric.
The Channel State Information (CSI) estimated on a Wi-Fi
receiver captures such multipath effects that can be utilized
to learn specific dynamics within a physical environment.
In this paper, we consider Wi-Fi enabled IoT devices which
have access to their respective CSI estimates, that can be
further used to train sensing models and/or perform inference
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Fig. 1: Only 25% of the test devices are able to host the original model.
Although model compression improves the deployablity/coverage, the model’s
accuracy takes a drastic hit, from 95% in the original model to ≈50% in
the highly compressed version. Figure on the left shows increase in energy
consumption with increase in resources
tasks. Such tasks are often claimed to be resource intensive
and the conventional folk wisdom conveniently recommends
offloading them off the device - for instance, to the network
edge.

However, if wireless data communication and sensing need
to co-exist, improving sensing at the cost of communication
is clearly not a proposition that scales well. For instance, the
wireless sensory data footprint takes a toll on the network
performance, degrading QoS/QoE for regular data traffic. Sim-
ilarly, deploying models for on-device inference tasks needs
tailor made solutions that do not scale well, often affecting
applications running locally on the same device.

In this paper, we extensively benchmark neural network
models commonly used in wireless sensing applications and
demonstrate how specific parameterization or compression of
such models improves overall system performance. In partic-
ular, we consider architectures based on Convolutional Neural
Network (CNN), Recurrent Neural Network (RNN) and Fully
Connected Network (FCN) and explore various compression
strategies including quantization, pruning, clustering or their
specific combinations. We highlight how specific strategies for
compression impact various key performance metrics includ-
ing inference accuracy, inferencing rate, energy consumption
per inference and memory usage. We propose Wisdom1, a
framework that can cater to specific constraints related to a
particular deployment and fine tune sensing models accord-
ingly. Wisdom internally implements a decision tree based
structure that recommends best effort compression strategies to
meet such constraints. Our framework recommended models
outperform vanilla compression strategies like weight quanti-
zation (often a de facto choice) in 85–95% of the cases.

1All data, traces, scripts related to the Wisdom framework are open sourced
at https://cse.iitm.ac.in/∼sense/wisdom/.

https://cse.iitm.ac.in/~sense/wisdom/


We make the following key contributions:
• We provide extensive benchmark results to demonstrate that

no single sensing model exists that can suit heterogeneous
IoT platforms with diverse performance requirements.

• We propose an automated framework, Wisdom, that can
optimize a sensing model while satisfying a set of user pro-
vided constraints related to expected performance measures
or hardware capabilities.

II. WI-FI SENSING PRIMER AND RELATED WORKS

A. Wi-Fi Sensing and the CSI metric.
Wi-Fi sensing leverages from the phenomenon of multipath

reflections within the wireless channel. When a modulated RF
signal is transmitted, it not only reaches the receiver device
along a direct path, but also gets reflected and scattered around
by reflectors (obstacles) present in the environment before
finally reaching the receiver at delayed intervals. Such delays
in the time domain introduce distortions in the corresponding
frequency response. Wi-Fi receivers estimate the Channel State
Information (CSI) that captures such frequency response at the
granularity of individual OFDM subcarriers present within its
modulation bandwidth (e.g., 20 MHz or 40 MHz etc.). The CSI
is estimated from the preamble symbols each time the a new
data packet arrives at the receiver. Note that, such information
is environmentally superimposed on the signal itself and is not
affected by the actual data bits being communicated.
CSI Toolkits. A host of hardware-software solutions exist that
make CSI available from specific Wi-Fi chipsets. Some of the
foremost solutions include the LINUX 802.11n CSI toolkit [3]
(on INTEL-5300 chipset), toolkits for the Qualcomm Atheros
chipsets [4] followed by software defined radio based solutions
like OPENWIFI [5] or PICOSCENES [6]. Note that majority
of the research on Wi-Fi sensing in the past decade was
based on one of such tools that mandated heavy compute
machinery to capture or process such data. Recently, the
community have explored portable options like the NEXMON
toolkit [7] for Broadcom chipsets (Raspberry Pi, Google
Nexus smartphones) or the ESP-CSI toolkit [8] for the ESP32
based microcontrollers. Such recent developments have made
it possible to experiment with CSI data available from low
cost, microcontroller based systems resembling IoT devices.
Sensing with CSI Spectrograms. CSI captures the instanta-
neous state of the channel (coherence time), however, often
the phenomena we want to sense span a duration of time that
is several orders of magnitude more than the coherence time.
Naturally, instead of analyzing such CSI vectors individually,
a common practice is to look at an aggregation of such vectors
obtained within a specific time window. Such time ordered and
aggregated vectors represent a CSI spectrogram (see fig 4).

B. Compressing Neural Network Models
Following are the techniques we utilize for compressing the

neural network models used for sensing.
Pruning [9]. Pruning is used to reduce the size and compu-
tational complexity of a neural network by identifying and

removing irrelevant or low-magnitude weights, thus inducing
sparsity in the model.
Weight Clustering [10]. Weight clustering involves grouping
similar weights together into clusters and then representing
all the weights in a cluster with a single centroid value. This
reduces the number of unique weight values in a layer to
a maximum of C, where C is the number of clusters. The
centroids are estimated using clustering methods, such as K-
means clustering.
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Fig. 2: Schematic of various model compression techniques. For weight
clustering, only two clusters (colored red and blue) are used. The solid lines
(top row) denote non-quantized weights while the dashed lines (bottom row)
denote quantized weights.

Weight Quantization [11]. Quantization reduces the precision
of the weights, for instance from single precision (4 byte
float) to a single byte. This is achieved by creating a
mapping between the real valued weights (r) and the quantized
weight values (q). The discretization is done at a desired scale
(S) with an origin or zero-point at Z. The mapping can be
expressed as r = S(q − Z). Note that quantization can occur
(a) post training, i.e., the model is trained using floating point
weights and the trained weights are then quantized, or, (b)
the training can itself be quantization aware, i.e., quantized
weight values are introduced during the forward propagation
in neural network.

C. Existing Research Gaps in Related Literature
Existing literature on Wi-Fi sensing increasingly tends to ex-

plore deep learning models with the primary goal of improving
inference accuracy. However, majority of such works do not
highlight the feasibility or challenges related to deployment of
such models on IoT class hardware. Second, often the CSI data
considered in such works are obtained from well provisioned
systems- for instance the LINUX 802.11n CSI toolkit [3]
or SDR based solutions like PICOSCENES can generate upto
1000 CSI samples/sec, an order of magnitude more than what
IoT class devices can barely support. Although such high
data rates facilitate noise filtering or estimating Doppler shifts
accurately etc., eventually leading to accurate modes, however,
it is equally important to cope with low fidelity CSI data
being processed on barely provisioned devices. Some initial
works on model compression are reported in the work by
Hernandez [12] [8], but it focuses on only model quantization
aspects.



We resort to some recent works and platforms that en-
able performing neural network compute on embedded de-
vices, particularly techniques for model compression [9]–[11].
Frameworks like Google’s TensorFlow (TF) [13] along with
tools like TFLITE or TFLITE-MICRO [14] provides hooks
to make models optimized and lightweight for various target
microcontroller architectures. Motivated by the existing re-
search gap and equipped with the recent advances in embedded
ML/DL frameworks, we move forward to investigate on-device
inferencing for Wi-Fi sensing tasks.

III. WIRELESS SENSING TESTBED

To perform benchmark experiments we create a measure-
ment setup to estimate various parameters related to the
inference tasks, along with generating our dataset and models.

A. Measurement Setup

As shown in fig. 1, we perform preliminary experiments on
a host of twenty test devices. While single board computers
like Raspberry Pi or Beagle Boards prove to be over provi-
sioned and have higher energy consumption, 8-bit microcon-
trollers (e.g., ATMEGA328P used in some Arduino devices)
have insufficient resources to demonstrate any interesting cost-
performance trade-off. For the various micro-benchmarks, we
choose ESP32-C3-MINI that features a 160 MHz single core
RISC-V processor with a 400 KB main memory (RAM)
and a 4 MB on-chip flash memory. This device allows us
a sweet spot to experiment with various cost-performance
configurations and make observations representative of IoT
class devices. Most importantly, ESP-32 has an integrated
Wi-Fi chip that exports CSI making it convenient to build
a complete on-device sensing application.
Energy Measurement. We advocate reporting energy con-
sumption per inference. This helps us make a fair comparison
across various models and compression techniques. We use a
Nordic Semiconductor Power Profiler Kit II (PPK2) for such
measurements. The PPK2 supplies a constant voltage of 5V
to the device, and measures the current drawn. For relative
comparison across inference models MA and MB , we take
the ratio, RAB =

i2ATA

i2BTB
, where iA, iB are the current draws

and TA, TB are the inference times respectively.
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Fig. 3: The PPK2-based measurement setup shows a couple of sample current
draw profiles for two different inference models. Note the difference in
inference times.

Memory Usage. Memory availability directly modulates the
size of the inference model that can be hosted. The device flash
is a non-volatile memory that holds models and application
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Fig. 4: Sample CSI spectrograms for the six activity classes in our dataset.
Each spectrogram is a 100×48 dimensional real valued matrix

programs. The RAM holds the runtime parameters such as
inputs, outputs and the values of the intermediate layers.
On-Device Deployment. We create various optimized ver-
sions of a given inference model by applying the respective
compression techniques or their combination as discussed
earlier. In order to deploy such models on a microcontroller
based device (ESP-32), we use the Tensorflow [13] Model
Optimization Toolkit and TFLITE-MIRO [14] that provides
necessary hooks to achieve the same.

B. Target Application and Models

Dataset. We create an extensive dataset to test the performance
of our models. The target wireless sensing application we
choose is Human Activity Recognition (HAR). We consider six
activity classes – two static: stand and sit, three dynamic: sit
up/down, jump, walk, and a class indicating human absence.
To make the dataset robust, we collect data at four different
locations – two indoors and two outdoors – using five different
human volunteers. For each location, every volunteer performs
five different activities each for 30 seconds while the CSI
was simultaneously recorded, roughly at 90–100 samples/sec.
The experiments were repeated ten times, at different times
of the day to reduce any bias. Overall, we record a rich
dataset of ≈300K CSI samples spanning all the six classes,
more or less uniformly. Each CSI sample contains 52 complex
IQ components along the 52 OFDM subcarriers at 20 MHZ
bandwidth. Out of 52, we only consider 48 data subcarriers
leaving out the four pilot subcarriers. We use 100 CSI samples
per spectrogram i.e., each spectrogram has a dimension of
100×48 amplitude values.
Neural Network Architectures. Existing neural network
models for HAR (using Wi-Fi sensing) majorly comprise of
CNN, RNN or FCN based architectures. For each architecture,
we create nine models with increasing number of parameters,
viz., 250, 1.5K, 3K, 6K, 12K, 24K, 50K, 90K and 180K.
Each model takes the 100×48 dimensional CSI spectrogram
as input and predicts one of the six HAR classes. For the CNN,
we use a RESNET-like structure where the number of residual
blocks are increased to capture higher number of parameters.
For FCN, we simply increase the number of layers in the
network, as well as the number of neurons in each layer. We
use a specific variant of RNN called Long Short Term Memory
(LSTM), that helps in preserving long distance relationship
within the samples. To increase the number of parameters we
increase size of the weight matrix for the different gates in an
LSTM cell, later we also stack multiple LSTM cells on top of
each other. To avoid over-fitting, we use standard techniques
like batch normalization and drop-out at each layer.



C. Relative Performance Benchmarks
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Fig. 5: Comparison of accuracy, energy per inference, inference rate, and
runtime memory reserved for the different architectures as we increase the
number of parameters. The models presented here are uncompressed.

Before we delve deeper into model compression in the
next section, we showcase some macro performance results
and discuss their implications. Fig. 5 demonstrates a com-
parison among the RNN, CNN and FCN derived models
for all their parameterized versions. We focus on four key
performance indicators – the accuracy obtained by the model,
energy consumed per inference, inference rate and the amount
of runtime memory (RAM) required. For CNN as well as
RNN, their accuracy saturates to about 95%, beyond 12K
parameters. FCN can only yield 80% accuracy even with
judicious over-parameterization. However, CNNs are at least
two orders of magnitude slower than their FCN counterparts.
Being on the slower side, the energy consumed per inference is
also relatively high for CNNs and RNNs. Another interesting
observation is how CNN’s runtime memory consumption
is always much higher compared to the RNN and FCN
counterparts. Fig. 5 implicitly indicates a room for trade-off
with prioritizing one performance metric over the other. For
instance, if accuracy is of the highest priority, CNNs are the
way to go, while if it is higher inference rates or low energy
consumption FCNs can be a good choice.

IV. COMPRESSION BENCHMARKS

In the previous section, we discuss general performance
trends and the way it is affected by a model’s architecture
and parameter count. In the following, we re-examine these
trends in the premise of model compression. In particular,
we analyze, (i) sensing performance related measures, viz.,
accuracy and inference rate, (ii) cost measures, viz., energy
and runtime/flash memory consumption.
Sensing Performance. In addition to inference accuracy, we
also consider the inference rate as a performance metric that
is crucial for real-time sensing systems.
Accuracy. Fig. 6 (left column) shows the impact of pruning,
clustering and both combined on the classification accuracy
when compared to an uncompressed version of the same
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Fig. 6: Percentage decrease in accuracy and flash memory consumption
due to Clustering (C), Pruning (P) and both (P&C) when compared to a
uncompressed model. The left column shows decrease in accuracy, while the
right one shows decrease in flash consumption.

model. Even after compression, CNNs continue to provide
higher accuracy. Though uncompressed RNNs provided a rea-
sonable middle ground between CNNs and FCNs, its accuracy
is quite sensitive to model compression (see fig. 6 – top-
left). While quantizing, for smaller models, the drop is not
much as the absolute accuracy itself is poor. For moderate-
sized models it impacts accuracy, before the models become
over-parametrized and robust against quantization.
Inference Rate. Pruning and clustering have minimal effects
on the execution time of the inference task, primarily because
of the floating point operations. However, quantization bumps
up the inference rate to as high as 30×, see fig. 7 (left).
Quantization optimizes the model for integer arithmetic, hence
offers a substantial benefit.
Cost Measures. We benchmark the system resource con-
sumption and observe how it is impacted by various compres-
sion strategies.
Energy Consumption. We observe that energy consumption is
heavily affected by the arithmetic type - integer versus floating
point operations. Hence, in this case also (like inference rate),
quantization provides the expected benefits. Fig. 7 (right)
shows how the energy consumed per inference improves
with quantization, particularly for models with high parameter
count.
Flash Memory Consumption. As the parameter count in-
creases, the accuracy figures remain robust in the face of
compression. This is accompanied with significant savings
in the flash memory consumption, so much so that the flash
consumption figures become equivalent to models with lower
parameter count (with lower accuracy) – refer fig. 6 (right
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Fig. 7: Percentage decrease in inference rate and energy per inference of
quantized models compared to their non-quantized counterparts for different
model architectures

column). A rule of the thumb will be to choose a compressed
model with a higher parameter count than an uncompressed
model with a lower parameter count. Quantizing models that
are already weight-clustered provides minimal improvements
in saving flash. This is because clustering, in effect, has an
approach that is similar to quantization in representing the
weights, although the weights themselves are still floats.
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Fig. 8: Comparison of runtime memory usage for different architectures when
quantized or otherwise. For CNN and RNN, QAT (quantization aware training)
and PTQ (post training quantization) reserve the same amount of RAM, while
for FCN they are different.

Runtime memory / RAM Usage. We show the impact on run-
time memory consumption in fig. 8. For a CNN, although the
RAM consumption does not change appreciably with the size
of the model, i.e., parameter count, quantization can improve
this by upto 72%. For, RNNs, quantized models do free
up the RAM, but note that it affects accuracy non-trivially.
Overall RAM usage for FCNs are much lower compared to
CNNs/RNNs.

V. WISDOM FRAMEWORK

The results above demonstrate a complicated interplay
among various system parameters and its impact on the over-
all performance. This necessitates a unified framework that
draws intelligent conclusions on such performance data and
recommends a suitable model optimization strategy. We define
Wisdom, a framework that can automate the process of pick-
ing the best compression strategy based on specific contexts,
for instance, accuracy requirements, hardware constraints, la-
tency constraints, energy goals etc. In short, Wisdom provides
a tuning knob that allows users to specify relative priorities
among such factors – e.g., lower energy usage over higher
accuracy, or lower memory usage over higher accuracy and so
on.

A. The Utility Metric

A system with more resources (higher cost) naturally offers
a better performance and vice versa. The challenge is to

find suitable a middle ground where neither the performance
is critically affected due to lower costs, nor does the cost-
performance trade-off result in diminishing returns. To capture
this trade-off between cost and performance, we define a utility
function U (eqn. 1) that we intend to maximize.

U(i) = P(i)− C(i) (1)

In the above equation, we use i to encode details of the
underlying model architecture (t) along with its parameter
count (n) and compression technique (o) being used. The
various choices for t, n and o, that we use in this work, are
provided in eqn. 2.

i ∈ I = {[t, n, o]|t ∈ T, n ∈ N, o ∈ O} where

T = {FCN, CNN, LSTM}
N = {250, 1.5K, 3K, 6K, . . . , 180K}

O = {none, prune, cluster, qat, . . . , pcptq}

(2)

P(i) denotes performance and C(i) denotes the cost of
running an inference model with configuration i. We define
P (eqn. 3) as a weighted sum of accuracy (A) and inference
throughput (I), where the respective weights wacc and winf

can be tuned by the user adhering to application requirements.

P(i) = waccA(i) + winfI(i)
where A ≥ Amin I ≥ Imin

(3)

Similarly, we define the cost C(i) (eqn. 4) as the weighted
sum of the energy per inference (E), runtime memory re-
quirements (R) and flash memory (F) consumed by the model
configuration i. The respective weights are denoted by
weng, wram and wflh respectively. Such weights directly de-
termine the priority a user assigns to various system resources.

C(i) = wengE(i) + wramR(i) + wflhF(i)

where E ≤ Emax R ≤ Rmax F ≤ Fmax

(4)

Henceforth, we use a weight vector w to denote all the
different weights [wacc, winf , weng, wram, wflh]. Also all the
metrics are subject to constrains as defined in eqns. 3 and 4.
For performance metrics A and I, we define Amin and Imin

as respective lower bounds. For cost metrics E ,R and F , we
define Emax, Rmax, and Fmax as upper bounds. c denotes
the vector [Amin, Imin, Emax, Rmax, Fmax] for all the con-
straints. Note that the metrics A, I, E ,F and R are normalized
in the range [0,1] using min-max feature scaling. Similarly, the
weight vector w ∈ [0, 1]5. We also ensure that wacc+winf = 1
for performance P , and wram +wflh +weng = 1 for cost C.
This leads both P and C to be in the range [0,1] and the utility
metric U in the range [-1, 1].

B. Representative Scenarios

We present a few representative scenarios to demonstrate
the impact of weight vector (w) on the C and P metrics and
how it modulates the choice of the model configuration.
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Fig. 9: The cost-performance trade-off as exhibited by various model architectures in the four representative scenarios. For each scenario, a specific combination
of weights are assigned to the vector, [wacc, winf , weng , wram, wflh].

• Scenario-1 (S1): In this scenario, we assign a higher weight
to accuracy (wacc = 0.9) compared to the inference rate (
winf = 0.1). The weights related to the cost metrics are
assigned uniformly ( weng , wram and wflh are all assigned
0.33). From fig. 9a we observe that CNNs and RNNs (both
quantized and non-quantized) exhibit better performance –
higher accuracy with lower inference rate. However, FCNs
are significantly cost efficient compared to CNNs/RNNs
with a minor compromise in performance. CNNs/RNNs are
typically energy hungry and memory intensive compared to
FCNs.

• Scenario-2 (S2): In contrast to S1, in this case, we as-
sign equal weights to accuracy and inference rate (wacc =
winf = 0.5). Weights related to the cost metrics remain the
same, as in S1. FCNs perform significantly better providing
reasonable accuracy (≈70-80%) and higher inference rate
(by upto two orders of magnitude) (see fig. 9b).

• Scenario-3 (S3): In this case, we prioritize accuracy mod-
erately higher than inference rate (wacc = 0.7 and winf =
0.3). Regarding the cost metrics, primary importance is
given to lower the flash memory consumption (wflh = 0.8).
Energy and runtime memory related metrics are assigned
equal weights of 0.1. Although CNNs/RNNs are energy
intensive and showcase a higher runtime memory footprint
compared to FCNs, it has negligible effect on the cost
due to the minimal weights assigned to such factors. It is
important to note that the flash memory footprint for all
the three architectures are roughly similar (depends on the
number of parameters). We do not observe a prominent cost-
performance trade-off in such scenarios.

• Scenario-4 (S4): In contrast to S3, we assign higher weights
to runtime memory consumption and energy per inference
(weng, wram = 0.45 and wflh = 0.1). The performance
related metrics are the same as in S3. Fig. 9d shows a clear
trade-off in terms of model selection - the FCN exhibits the
maximal performance at minimal cost.
The constrains used for all the above scenarios are

as follows: Amin = 0.70, Imin = 0.03 Hz, Rmax = 200 KB,
Fmax = 2048 KB and Emax = 50 mA (please note that these
absolute values are normalized when actually applied for
filtering). All the points in fig. 9 are of valid models that satisfy
these constraints.

C. Model Selection using Decision Trees

The goal of Wisdom framework is to choose a model i that
maximizes the utility metric U , given weight vector w and a
constraint vector c. Overall we can summarize our objective
as finding the optimal model i∗ as defined below:

i∗ = argmax
i

U(Wisdom(w, c))

where Wisdom : {w, c} → I
(5)

Wisdom uses a decision tree that takes as input w, c and
outputs i. As dim(i) = 3 denoting the model architecture
t, number of parameters n and compression technique o as
defined in eqn. 2, it therefore performs three classification
tasks simultaneously. We decide to use a single decision tree
with three outputs instead of three independent decision trees,
because the outputs t, n and o are correlated to each other,
e.g., certain compression techniques work better with certain
architectures (refer sec. IV).

In order to train the decision tree we create a dataset with
≈ 27K different w and c configurations. For each w, we
calculate U for all the models we have trained (i.e., 3 ar-
chitectures, 9 different parameter counts, and 12 compression
techniques yielding a total of 324 models). We choose the one
(i∗) that has maximum utility while satisfying the constraints
c. i∗ serves as our ground truth for a given weight vector
w. We handcraft 126 unique test cases covering different
scenarios like the ones described in sec. V-B, and ensure that
these are not part of training set. The trained decision tree has
an accuracy of 97.61%, where accuracy denotes the fraction
of cases the optimal model i∗ is chosen.

D. Comparison with baseline models

We demonstrate the effectiveness of Wisdom in choosing
the optimal model i∗ by comparing utilities of the chosen
model over a host of baselines.
Baseline Models. The baseline models span three architecture
types (FCN, CNN and RNN). For each type, we consider
three different parameter counts (≈1500, ≈6K and ≈24K)
regulating the overall size of the model – small, moderate
and large. This yields nine uncompressed model configurations
(NQ). We also create a quantized counterpart of these nine
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Fig. 10: Fig. 10a shows the diminishing return of utility with increase in cost for a particular configuration of w . Fig. 10b compares the utility of all NQ
baseline model and all Q baseline model, and the model recommended by Wisdom. The utility is relative to the model with highest utility for that scenario
i.e., i∗. Here S1, S2, S3 and S4 denote different scenarios with different weights w, as defined in sec. V-B. Fig. 10c shows CDF of the utility difference
between Wisdom recommended model and utility values of all the Q and NQ baseline models for all test cases. Fig. 10d shows the percentage decrease in
various cost/performance metrics of models chosen by Wisdom and compare it with Q baseline models. The percentage decrease is w.r.t NQ models.

models referred as Q. The baseline models are indicative of a
naive (non-informed) choice.

As shown in fig. 10a, for scenario S1, increasing the cost
increases the utility till a certain point after which it starts
decreasing (diminishing returns). i∗ is the model whose C
corresponds to the peak of the plot i.e., maximum utility. The
three dashed vertical lines correspond to the best quantized
(Q), non-quantized (NQ) and Wisdom recommended mod-
els. Observe that, compared to the Wisdom recommended
model, the best non-quantizd model (FCN) has lower cost as
well as lower accuracy. Similarly, the best quantized model
(CNN/RNN) has greater cost but lower accuracy.

Fig. 10b presents the (average) relative utility of the quan-
tized, non-quantized and Wisdom recommended models. The
relative utility is measured as U(i)

U(i∗) . First, the Wisdom
recommended models achieve a relative utility close to one.
Second, in terms of relative utility, such models outperform
the Q and NQ counterparts by 0.5 or more. In fig. 10c, we
plot the empirical CDF for the difference in relative utility
values between the Wisdom recommended models and the
Q/NQ models respectively. For both cases, the median stands
at ≈ 0.5 while the 75th percentile is at ≈ 0.7. Overall, the
Wisdom recommended model achieves a higher utility over
the Q and NQ baseline models 85% and 99% of the test cases
respectively. Further, we observe that models recommended
by Wisdom on average consumes similar amount of resources
compared to Q models, but have negligible decrease in accu-
racy. However, if the models are simply quantized, we observe
a ≈ 15% drop in accuracy on an average (see fig. 10d).

VI. CONCLUSIONS

Wireless sensing has gained significant traction, particularly
with its proliferation among resource-constrained IoT devices.
Traditionally, such wireless sensing applications assume an
edge oriented architecture where the sensory information (CSI)
is communicated to the edge for inference tasks. Such archi-
tecture has some apparent drawbacks related to sharing of the
network bandwidth and edge processing costs. In this paper,
we explore on-device wireless sensing that advocates hosting
the inference models on the IoT device itself. We showcase

the related challenges and demonstrate that a one-size-fits-
all type of model is infeasible given the heterogeneity of
IoT-class devices and diverse user requirements/priorities. We
propose Wisdom, a framework that, depending on capabilities
of the hardware platform (memory availability, energy con-
straints) and application’s requirements (accuracy, inference
rate), can compress the inference model. Such context aware
compression aims to improve the overall utility of the system
- maximal inference performance at minimal resource costs.
We demonstrate that models obtained using the Wisdom
framework achieve higher utility compared to baseline models
in more than 85% of cases.
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